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Executive Summary 

The purpose of this report is to present and discuss Phase 1 results of the Kalahari Wildlife Landscape 
Connectivity Analysis (KWLCA). This is an intermediate stage of the KWLCA marked by the 
completion of comprehensive wildlife species habitat suitability (HS) models for 32 species, presented as 
occurrence probability surfaces across the project landscape. These HS models will be inverted into 
resistance surfaces for select species then combined with other landscape resistances (e.g. fences, roads) 
for Phase 2 wildlife movement (connectivity) modelling of present time and future scenarios.  

In this Phase 1 we subjected a unique animal track-based dataset of comprehensive multi-species wildlife 
occurrence to a rigorous spatial analysis of habitat suitability using diverse multi-scale landscape 
variables that included novel fine-resolution mapping of human-livestock disturbance. 

Results show that although most species responded negatively to human-livestock disturbance, many of 
the smaller herbivores, carnivores, insectivores are widespread and have at least some level of tolerance 
to intermediate kraals density, i.e. borehole allocations at enforced spacing (6-8 km) in PAR/CGA land 
use zones. Further examination of connectivity concerns for these species is unnecessary as a) land use is 
unlikely to intensify beyond this level over large areas of the landscape in the foreseeable future; and b) 
fences are largely permeable to their movements. 

By contrast, most large herbivores (antelopes) and carnivores are highly sensitive to pastoral activity in 
the landscape. They are therefore dependent on land uses that exclude or restrict human-livestock 
disturbance, and are threatened by habitat loss and landscape fragmentation (loss of connectivity) due to 
pastoral encroachment. Gemsbok, eland, and lion proved the most disturbance sensitive. These two 
antelopes had the strongest performing predictive models among all species, due in large part to their 
exceedingly strong negative responses to kraals density at the largest spatial scale examined (32 km 
radius kernel). Their spatial responses to fenced livestock operations were similarly negative, indicating 
that fences do not form hard boundaries separating pastoral areas from wildlife areas but rather negative 
impacts extend far beyond the fence lines often assumed to contain them. 

Habitat suitability and combined biodiversity maps indicate the highest value wildlife core comprised of 
KTP and adjacent WMAs (KD1,2,12,15). The occurrence probability surfaces of the most disturbance-
sensitive species indicate continuity through 2 strong corridors linking the aforementioned southern core 
to the northern core (CKGR, KW2, GH10 WMAs), comprising the ‘central’ corridor (KD5,6,12 WMAs) 
and the ‘western’ corridor (GH11,13, KD1). The relative importance of these two corridors appears to 
differ depending on species. The formal connectivity analyses to be conducted in Phase 2 will be 
illuminating in assessing the functional connectivity of these corridors for the most sensitive species. 

The present KGDEP is timely considering the already allocated, planned and proposed agricultural 
developments (RAD borehole allocations, WMA dezonings, fenced ranch expansions) which will impact 
precisely these precariously remaining corridors of wildlife connectivity. The impact of these specific 
detailed landscape change scenarios will be examined, quantified and reported in Phase 2 to more 
incisively and explicitly inform land use planning. Given exceptional gemsbok model prediction 
performance and strong response to modelled disturbance variables that stand to change markedly in the 
future landscape scenarios, gemsbok is nominated as an umbrella in Phase 2 connectivity modelling for 
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slightly less disturbance-sensitive species, to be supported by eland and lion in a subset of packaged 
scenario options. 

The habitat suitability maps presented herein represent an already outdated or somewhat historical state of 
landscape in terms of encroachment (i.e. the situation for wildlife can appear in these maps better than it 
presently is). This is because models are based on borehole allocations that were already developed as 
operational cattleposts during the past decade coinciding with track data capture. There has been a 
somewhat rapid allocation of new borehole rights, particularly among RAD communities situated in 
proximity to key areas of connectivity in the landscape, and there is marked lag affect between time of 
landboard allocation and time these new locations become developed into cattleposts to influence wildlife 
distributions. In Phase 2 will we update models to reflect the present time situation, before venturing into 
future scenarios including those based on borehole allocations already approved but not yet developed on 
the ground. 

Note we use ‘habitat suitability’ and ‘probability of occurrence’ synonymously and interchangeably 
throughout the report. We use ‘human-livestock disturbance’ loosely interchangeably with ‘kraals’ or 
‘kraals density’. 
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1 INTRODUCTION 

The Government of Botswana, with the support of the United Nations Development Programme 
(UNDP) is undertaking a Global Environment Fund (GEF)-financed project entitled “Managing 
the human-wildlife interface to sustain the flow of agro-ecosystem services and prevent illegal 
wildlife trafficking in the Kgalagadi and Ghanzi Drylands”, more simply known as the 
Kgalagadi and Ghanzi Drylands Ecosystem Project (KGDEP). 

Key to the KGDEP is development of an Integrated Land Use Management Plan (ILUMP) for 
Kgalagadi and Ghanzi Districts. These two Districts (along with lesser parts of Southern and 
Kweneng Districts) comprise what remains of the core free-ranging Kalahari wildlife landscape 
in southern Africa. The main objective of the ILUMP is to address the competition and conflict 
between land uses in this landscape and to provide a framework for maintaining wildlife 
migratory corridors between Kgalagadi Transfrontier Park (KTP) and Central Kalahari Game 
Reserve (CKGR).  

Accordingly, a project area expert consultant was procured to conduct a quantitative Kalahari 
wildlife landscape connectivity analysis (KWLCA) to generate the appropriate spatially explicit 
guidance for the ILUMP that ensures the KGDEP achieves its component goals. The KWLCA 
requires computationally intensive state-of-the-art landscape modelling, so the consultant 
necessarily collaborated with leading world experts at EcoAnalytica LLC, a world-leading 
ecological modeling and informatics consultancy based in the United States.  

The Inception Report for the KWLCA (May 2021) described the background, objectives, 
methodology and proposed timeline for the KWLCA, as well as initial ideas for integration with 
the early phase Situational Analysis of the ILUMP. This report describes the actual 
methodological approaches taken in detail, including the wildlife and landscape data, steps 
involved in their processing, and the analyses workflow to produce the results. Phase 1 results 
are presented predominantly in the form of habitat suitability maps, including predictive 
performance measures of the models, models structure with variables coefficients and strengths, 
along with plsmo spline plots showing responses to specific variables. We provide tentative 
inferences about the current state of wildlife core areas and connectivity from these results and 
justify species selection for Phase 2 connectivity modelling and scenario planning.  

The Deliverables for Phase 1 reporting from the ToRs are reiterated here: 

▪ Assessment of the current state of the comprehensive multi-species free-ranging Kalahari wildlife 
landscape (from data based on multi-scale modelling of distribution and abundance), including the 
identification of core areas and existing connectivity between KTP and CKGR. 

▪ Identification of the key environmental driver(s) of wildlife species spatial use in the Kalahari 
landscape, including quantification of spatially explicit response gradients of wildlife species 
occurrence and abundance in relation to those key environmental driver(s). 

▪ Identification of the subset of most disturbance-sensitive species for further analysis. 
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2 METHODOLOGY 

2.1 Study Area 

The KWLCA area of interest (AOI) was necessarily defined for all subsequent data layers 
preparation and analyses. The AOI encompasses the full extent of the remaining free-ranging 
wildlife landscape in between KTP and CKGR (Figure 1). It includes most of Kgalagadi District, 
much of Ghanzi District, and parts of Southern and Kweneng Districts. Present land use in 
between the two protected areas is largely comprised of unfenced Wildlife Management Areas 
(WMAs) and Communal Grazing Areas (CGAs), plus lesser portions enclosed with fencing as 
ranches, farms, and ploughing fields.  

The AOI extent is bound by the international border fences with Namibia and South Africa in the 
west through southeast, by a reasonable buffer into Ghanzi District CGAs and TGLP ranch block 
in the northwest - and similarly in the east, and an acceptable distance into CKGR. The CKGR 
extent was determined as a tradeoff between our reluctance to over-extend modelling prediction 
in the northeast too far up the rainfall gradient with limited wildlife locational data on the one 
hand, and on the other hand the need to include a large enough core area of CKGR for source 
populations required in Phase 2 modelling. 

The AOI is 170,128 square kilometres in extent. 
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Figure 1  AOI for the KWLCA. Select land use blocks within the study extent are labelled with their alpha-numeric 

identifiers.  

2.2 Wildlife geolocational data – track (spoor) transects 

2.2.1 Transect coverage 

Wildlife track data were collected along various transect coverages over the period August 2008 
– April 2018. Track transects of varying lengths typically coincided with low-traffic sand roads, 
cutlines, and 4x4 trails, but also include lesser lengths along upgraded calcrete roads and the 
meridians of paved roads, and some coverage off-road. Multiple criteria guided transect 
selection. Some were selected to sample disturbance gradients i.e. from densely utilized CGAs 
through the last cattlepost at the frontier edge, continuing through WMAs to the protected area 
boundaries. Other transects were selected to randomly sample land use types. All suitable linear 
features that bisected potential corridor areas in the AOI were sampled throughout their 
continuous lengths. The majority of transects were replicated over multiple years, in different 
seasons. Overall, coverage includes extremes in disturbance from the outskirts of major villages 
to the core of the KTP. Total transect coverage analyzed was 9,274 km (Figure 2). 
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Figure 2  Wildlife track transect coverage within the AOI. The majority of transects within the spatial coverage were 

temporally replicated. 

2.2.2 Transect sampling 

A key distinction between transects is those for which comprehensive species > 0.2 kg were 
sampled vs those for which the subset of large species only were sampled. Large species are 
those generally > 25 kg body mass, i.e. the antelopes besides dwarf species (steenbok, duiker), 
ostrich, large cats, hyenas and wild dog. The distinction between these two groups was naturally 
born of convenience and practicality of tracker search image related to size of tracks. 

2.2.2.1 Comprehensive species transects 

A subset of transects were sampled in 2008-2014 for comprehensive species (i.e. all mammalian 
wildlife > 0.2 kg body mass, plus large terrestrial birds). These transects were precleared of old 
tracks by dragging a heavy steel beam behind a vehicle, so that fresh tracks accumulated over the 
following 24-hr period before sampling. Without pre-clearing the transect first, track 
accumulation of comprehensive species is too great, especially including the smaller abundant 
animals (e.g. hare, springhare, jackal, steenbok) to allow collection of data in an efficient and 
standardized way. Additionally, some of the smaller and lighter foot-loading species are difficult 
to see on compacted and/or vegetated ground. Preclearing therefore improved detectability, 
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minimizing false absences. Surveys began early morning and were conducted by two observers 
(Panana Sebati – expert traditional tracker from Ngwatle village, and Derek Keeping – also a 
competent tracker) on specialized ‘tracker seats’ mounted to the front of the vehicle. Progressing 
at a meticulous rate between 6 and 8 kph, all track intersections with the transect were recorded 
as species and numbers with global positioning system (GPS) locations. The advantage of two 
simultaneous observers minimized missed tracks but also allowed difficult and obscure spoors to 
be examined in detail until consensus on identity reached, using Liebenberg (1990) as a 
reference when necessary. 

2.2.2.2 Exclusively large-bodied species transects 

The remainder of transects sampled in 2014-2018 differed from the comprehensive species 
transects in that they were not precleared or prepared in anyway prior to sampling. As only large-
bodied species with larger spoor were considered, sampling proceeded at faster speed, typically 8 
– 15 kph. Observations were made similarly from the front of the vehicle by a minimum 2 expert 
observers (traditional trackers from villages Zutshwa, Ngwatle, Ukwi, Maake, Bere, Kacgae). 
Large herds were enumerated using handheld mechanical tally counters. The other distinction 
from comprehensive species transects was that older tracks were recorded, and ages of 
observations estimated (i.e. < 24 hrs, > 24 hrs, 3 days +, 1 week +, 1 month +). 

2.2.3 Wildlife species occurrence data 

36 mammalian and ground bird wildlife species above threshold size were detected with 
regularity on the track transects (Table 1). Secretary bird were also detected with regularity but 
omitted from further consideration based on low observations and the fact that they move more 
by air than ground. Additional wild mammals of target size detected but with irregularity 
included baboon, banded mongoose, giraffe and elephant. We consider these species uncommon 
or having peripheral ranges in relation to the project area of interest, although elephant appeared 
to be increasing towards the latter end of the sampling decade.  

 

Table 1. Transect observations and numbers of 100m segments along the transects with presence (1) and absence (0) back-
transformed from density for each of 36 species. 

Species Field data   Processed locational data 

  

Track sets 
(individual 

intersections) 

Occurrences 
(GPS 

locations)   Absence Presence Presence (%) 

pangolin 44 42  29035 1050 3.5 

wild dog 334 115  49945 2763 5.2 

warthog 93 38  13687 805 5.6 

suricate 149 32  8567 850 9.0 

springbok 8109 842  29679 4559 13.3 
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black-footed cat 35 34  5917 1035 14.9 

slender mongoose 159 123  7928 1489 15.8 

lion 537 299  60805 11990 16.5 

cheetah 423 270  61424 12143 16.5 

spotted hyena 339 260  48742 10292 17.4 

ground squirrel 471 173  7738 1679 17.8 

leopard 554 519  56986 17383 23.4 

eland 12489 1176  14988 6148 29.1 

wildebeest 3923 1096  22791 10297 31.1 

honey badger 373 296  6081 3136 34.0 

aardwolf 308 288  5885 3532 37.5 

kudu 3774 1692  19723 13550 40.7 

caracal 297 271  5373 4044 42.9 

duiker 2149 1770  8059 6418 44.3 

ostrich 3616 1943  16891 18149 51.8 

brown hyena 2110 1944  24695 34339 58.2 

aardvark 634 590  3858 5559 59.0 

genet 568 546  3728 5689 60.4 

yellow mongoose 1714 1355  3464 5953 63.2 

kori bustard 1316 1092  3388 6029 64.0 

gemsbok 22505 8082  11102 21986 66.4 

African wild cat 748 690  3128 6289 66.8 

hartebeest 13360 6023  9472 25568 73.0 

porcupine 2380 1515  2169 7248 77.0 

striped polecat 1981 1651  2120 7097 77.0 

bat-eared fox 4669 2228  2148 7269 77.2 

cape fox 934 878  1905 7512 79.8 

springhare 8271 4804  552 8865 94.1 

jackal 7880 6283  149 9268 98.4 

steenbok 16427 12066  20 9397 99.8 

hare 12723 7845   0 9417 100.0 

 

There was a large disproportion between originally recorded presences and absences for each 
species along the transects. To avoid zero inflated models, and to reduce fine scale stochastic 
noise below the scale of our analysis, we transformed presences and absences into continuous 
density values based on density of occurrence records within 100m transect segments calculated 
over 250m search radius.  

We first prepared the point observations for each species separately. Next, we divided 
occurrence records for each species by seasons and year to match the seasonal variables. We 
defined seasons for this analysis as wet (October to March) and dry (March to September). We 
then applied a 500m buffer over the linear transect as a mask for kernel density calculations to 
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allow a degree of spatial mismatch between the linear transect and point species occurrence 
observations. Sampling segments of 100m were then prepared by converting the linear transects 
into 100m resolution rasters, which were then converted back to a point layer for density values 
extraction. 

To calculate density of species occurrence we ran a kernel density using sp.kde function in the 
SpatialEco R package (R Core Team. 2021) and applying 250m kernel width. This kernel width 
was chosen to ensure that the density is calculated over a small enough window to preserve fine 
scale variation in occurrence distribution and reduce autocorrelation due to overlapping 
neighborhoods. However, the window should also be large enough to capture neighboring 
occurrences and reduce the fine scale noise of interspersed zeros from stochastic factors of where 
and when particular animals crossed. This allowed us to reduce zero inflation caused by too 
many fine scale absences among scattered presences. We ran kernel density on the species point 
occurrence data separately for each species, season and year. Next, for each season and year, we 
extracted the species occurrence density values using the previously prepared 100m spaced 
sampling points along the transect. We used the same sampling points to then extract the values 
of all considered predictor variables (this step is further explained in the following section). If the 
transect/segment was sampled more than one time we averaged the kernel density values as well 
as values of the seasonal variables (precipitation and NDVI) to receive one spatial location and 
density/variable value per sampled segment.  

To model species habitat selection based on spoor transect data we tested performance of several 
modelling approaches. These included random forest, generalized linear regression and logistic 
regression. To do so we tested both continuous species occurrence density values as well as 
density values back-transformation to binary presence/absence data. The latter was achieved by 
assigning value 1 (presence) to every location with density higher than zero and value zero 
(absence) to location with density equal zero. The back-transformation from density to binary 
data was done to reduce fine scale stochastic noise (at scales smaller than the environmental 
variation sampled) and the problem of zero inflation in the species data matrix. 

2.3 Landscape data and variables 

2.3.1 Landscape data 

We used a set of 14 different source layers to then develop and test a biologically relevant set of 
covariates likely influencing habitat use of the studied species (Table 2). These included four 
anthropogenic and ten environmental factors.  
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Table 2. Data used to derive variables hypothesized to affect distribution of the study species 

Layer Abbreviation Description Original 
format 

Resolution Final units Source 

Kraals • KraalsNF 
(non-fenced) 

• KraalsF 
(fenced) 
 

Points 
representing 
kraals. 
Divided into 
kraals in 
free-ranging 
landscape 
i.e. 
cattleposts 
(KraalsNF), 
and kraals 
within 
fenced 
enclosures 
like farms 
and ranches 
(KraalsF). 

Points  Number of 
kraals /km2 

Ground truth 
during surveys 
and digitalized 
based on 
Google Earth 
imagery 
representing 
years 2008 - 
2018 

Human 
population 

HP Population 
number per 
settlements 

Points  Estimated 
human 
population/km2 

Statistics 
Botswana 
Census 2011 

Land use • PA 
(Protected 
areas) 

• WMA 
(Wildlife 
Management 
Areas) 

• PAR 
(Pastoral/ 
Arable/ 
Residential) 

Designated 
main land 
use 
categories 

Polygon   Focal mean Adapted from 
DWNP BASIS 
program layers 
(2009) 

Roads • Roads 
calcrete 

• Roads paved 
• Roads sand 

Main types 
of roads 

Polyline   Focal mean Corrected by 
digitalization 
National 
Roads 
Database 

Artificial 
Water 
Points 

AWP Wildlife 
provisioned 
water  

Points  Number of 
water 
points/km2 

Adapted from 
KCS, and 
groundtruthing 

Pans Pans Unvegetated 
pan surfaces 

Polygon   Focal mean Digitalized 
based on 
Google Earth 
imagery  

Percent tree 
cover 

VCF200817  MODIS 
Terra 
Vegetation 
Continuous 

Raster 250m % NASA data 
accessed and 
processed in 
Google Earth 
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Fields 
Yearly 
(averaged 
for years 
2008-2018) 

Engine 

Normalized 
Difference 
Vegetation 
Index 

NDVI Landsat7 8-
Day NDVI 
Composite 
averaged 
over each 
season 

Raster 30m -1 to 1 NASA data 
accessed and 
processed per 
season and 
year in Google 
Earth 

Precipitation Prec Monthly 
averaged 
precipitation 
from 2008 
to 2018 

Raster 1000m mm OpenLandMap 
Precipitation 
Monthly 
accessed and 
processed per 
season in 
Google Earth 
Engine  

Bulk density 
of the fine 
earth 
fraction 

Soilbdod 0-5cm mean 
bulk soil 
density as 
measure of 
soil 
compaction 

Raster 250m cg/cm3 SoilGrids 
ISRIC – 
World Soil 
Information 
accessed and 
processed in 
Google Erath 
Engine 

Soil clay 
content 

Soilclay 0-5cm mean 
proportion 
of clay 
particles (< 
0.002 mm) 
in the fine 
earth 
fraction 

Raster 250m g/kg SoilGrids 
ISRIC – 
World Soil 
Information 
accessed and 
processed in 
Google Erath 
Engine 

Soil 
nitrogen 
content 

SoilN 0-5cm mean 
of total 
nitrogen  

Raster 250m g/kg SoilGrids 
ISRIC – 
World Soil 
Information 
accessed and 
processed in 
Google Erath 
Engine 

Soil sand 
content 

 

 

 

 

 

Soilsand 0-5cm mean 
proportion 
of sand 
particles (< 
0.05 mm) in 
the fine 
earth 
fraction 

Raster 250m g/kg SoilGrids 
ISRIC – 
World Soil 
Information 
accessed and 
processed in 
Google Erath 
Engine 
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Soil organic 
carbon 
content 

Soildsoc 0-5cm mean 
of soil 
organic 
carbon 
content in 
the fine 
earth 
fraction 

 

Raster 250m g/kg SoilGrids 
ISRIC – 
World Soil 
Information 
accessed and 
processed in 
Google Erath 
Engine 

 

2.3.1.1 Kraals 

The prevailing human land use influence in the Kalahari landscape is pastoral. We strived to 
model the most relevant variable representing human-livestock disturbance in the project AOI, 
and ultimately settled on kraals for the following reasons. Kraals are either steel fenced or thorn 
branch bomas into which livetock (cattle, goats and sheep) are periodically herded and contained 
in dense concentration. They develop in the vicinity of any human settlement in the Kalahari, 
and around any fixed points of water provision (i.e. borehole, or alternatively bowsered water) 
colloquially known as ‘cattleposts’. At fine spatial scale, kraals develop in a clustered pattern 
around provisioned water points to form a ‘cattlepost’. In addition to cattle and/or goats/sheep, a 
lesser number of horses, donkeys, dogs and chickens are often present at cattleposts. Kraals also 
form larger denser clusters around the outskirts of Kalahari villages and towns – essentially 
configured as scaled up oversize cattleposts. Thus, kraals not only signify the point locations 
where livestock are concentrated within the landscape, but also permanent human settlements 
and micro-settlements, i.e. the people who tend the livestock. They are therefore the appropriate 
point disturbance locations from which the synergistic effects of livestock and people attenuate 
outwards into the surrounding landscape. One familiar impact is the changes to vegetation 
caused by overgrazing with time resulting in the development of 'piospheres' (Andrew 1988; 
Perkins 2018). We hypothesize that illegal wildlife harvest and human-wildlife conflict also 
exhibit predictable attenuating impacts in relation to kraal proximity. Finally, and importantly, at 
the landscape scale the locations of kraals can be practically managed via land use designations 
and the allocation of borehole rights entrusted by landboards. 

Kraals are readily visible in high resolution satellite imagery as dark-stained features (contrasting 
with predominantly light-colored soils in the region) caused by the concentrated accumulation of 
livestock dung. We manually digitalized kraal locations across the project landscape from the 
best resolution imagery available in Google Earth corresponding to the period over which track 
data were collected (2008-2018). Within the project AOI, we marked a total 26,843 kraals 
(Figure 3). 
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Figure 3  Kraal locations (26,843 points) at AOI scale zoomed to typical cluster of kraals comprising cattlepost scale. 
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During track data collection, the cattleposts in closest proximity to transects were either 
groundtruthed, or their vehicle accesses geo-referenced to be crosschecked and verified later in 
satellite imagery. We are therefore confident in the accuracy and completeness in temporal 
match of cattleposts (kraals) in nearest proximity to track transects. Notably, in no instances were 
cattleposts discovered on the ground during the establishment of transects or track data collection 
that were not visible in satellite imagery. 

Several groundtruthing efforts were made during 2019-20 in key areas of the landscape known to 
be experiencing an expansion of cattleposts (e.g. RAD village development radii) to verify newly 
founded cattleposts since the time that track data were collected. This limited number of 
locations that were not relevant at the time of track data collection were omitted from the present 
habitat suitability modelling and will only be considered in Phase 2 modelling to update a 
present time picture of the landscape and model future scenarios. 

Our analysis distinguished two categories of kraals, those enclosed within fenced farm and ranch 
areas (KraalsF) and those that were not (KraalsNF). To clarify differentiation between KraalsNF 
vs KraalsF variables: we do not claim any visible or fundamental distinction between the kraals 
that develop in free-ranging areas around villages and cattleposts (KraalsNF), and those that 
develop on farms and ranches (KraalsF). The kraals themselves are of course similar in structure 
and all fenced in order to hold livestock. The KraalsF vs KraalsNF distinction is rather whether 
those kraals (or typically kraal clusters) are located within a larger fenced enclosure (i.e. 
farm/ranch) which separates them from the greater free-ranging wildlife landscape, or not. In 
fact, many KraalsF begin as functional KraalsNF and only later is a farm or ranch boundary 
fence erected to enclose them. 

Fences were not included as a variable in the habitat suitability modelling because we decided it 
is most important to measure the spatial impact of kraals inside fenced farms and ranches 
(KraalsF), independent of fenced boundaries. Fences, however, are obviously important features 
functioning as filters and barriers to wildlife movement and will therefore be introduced more 
appropriately into the Phase 2 connectivity models and scenario planning. 

2.3.2 Variables 

All layers, except of kraals, human population and land use, were rasterized and resampled to 
100m resolution and re-projected to UTM 34S coordinate system. 

From these data layers we generated in total 135 covariates tested in the habitat suitability 
modeling. These were derived from multiscale analysis of the original variables. Seventeen of 
the original variables were calculated at seven different spatial scales, and two variables (kraals 
fenced and non-fenced) were calculated at eight different spatial scales to represent their spatial 
effect on wildlife habitat use (McGarigal et al. 2016). Since the studied ecosystem is strongly 
influenced by seasonality, two of the variables, NDVI and precipitation, were calculated 
seasonally.   
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2.3.2.1 Seasonal variables (NDVI and precipitation) 

For seasonal averages of NDVI and precipitation we considered wet season as October through 
March and dry season as April to September. Since precipitation data were represented by 
monthly averages across the 2008-2018 study period, we generated two precipitation layers: one 
representing wet season and one for dry season. In the case of NDVI, we calculated seasonal 
averages of 8-days NDVI for each surveyed year, resulting in 22 NDVI rasters, which were then 
temporally matched with species occurrence data. The calculations of the seasonal layers and 
data extraction were performed in Google Earth Engine.  

2.3.2.2 Human population 

To reflect the spatial distribution and density of the human population in the study region we 
used census data of the human population for each settlement that is officially recognized and 
censused by the Botswana government in the Statistics Botswana Census 2011. We converted 
these census population sizes into a spatial point layer reflecting the spatially distributed 
populations. We produced a spatial layer reflecting the extent of these populated areas using a 
calibration approach described by Elliot et al. (2014). Specifically, we calculated the size of the 
largest town in the study area (Tshabong) using as a base Google Earth Imagery. We then used 
the ratio of the Tshabong population size to its area to calculate the calibrated expected spatial 
extent (area) of all other settlements based on their population number provided by the census. 
Using the estimated settlement area, we calculated a radius of a circle, reflecting spatial extent of 
the settlement weighted by human population. Over each settlement we generated a buffer with 
the given radius and we then rasterized this buffer at 30m resolution and turned it back to a point 
layer reflecting spatially distributed population size per settlement (as in Elliot et al. 2014). 
These analyses were performed in ArcGIS 10.x (ESRI 2012). 

2.3.2.3 Multiscale variables 

We considered and tested seven spatial scales reflecting the extent of an impact each 
anthropogenic or environmental factor can have on wildlife. For point features (human 
population and artificial water points we calculated point-based kernel density (km2) of search 
radius: 250m, 500m, 1km, 2km, 4km, 8km, 16km. Due to importance and suspected wider range 
of kraals impact we calculated an additional radius of 32km for fenced and non-fenced kraals. 
The selection of scales to be tested follows other recently published multi-scale modeling studies 
(e.g. Mateo-Sanchez et al. 2014, Cushman et al. 2017) The scale range allows for multiscale 
assessment of how variables affect movement and occurrence at different scales (e.g. McGarigal 
et al. 2016) including fine scale habitat and movement path selection up to home range size for 
smaller species. These layers were produced in ArcGIS 10.x using Kernel Density tool. 

In the case of factors represented as continuous raster variables we calculated focal mean by 
applying a gaussian kernel function. We determined the size of sigma (standard deviation of the 
Gaussian kernel) as half of each scale used to calculated point-based variables (given that 95% of 
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a Gaussian distribution is within two standard deviations), thus: 125m, 250m, 500m, 1km, 2km, 
4km, 8km. The focal mean layers were calculated using focalMat function in R terra package (R 
Core Team. 2021). 

2.4 Habitat suitability models 

We used the species density data and binary presence/absence data to test various modelling 
approaches of modelling habitat suitability for each of the species. These included random forest, 
linear regression and logistic regression. Random forest showed very good ability to explain the 
occurrence patterns along the transects; however, it performed poorly when predicting species 
occurrence outside of the transects and produced oddly patterned artifacts in the predicted 
probability of occurrence surface. Linear regression performed poorly fitting the density data. 
The best approach to model and predict habitat suitability with spoor data was logistic 
regression. We tested each of the three modelling approaches by applying three analytical steps 
described in detail below: scale optimization of each variable, multivariate model selection and 
model fit (e.g. Wasserman et al. 2012; Macdonald et al. 2019, 2020). However, since only the 
logistic regression produced high performing habitat suitability predictions across the study area 
for most species, below we will only describe this approach. 

2.4.1 Scale-optimization and variables selection 

To choose the best spatial scale (scale at which the considered factor affects strongest species 
habitat use) for each of the considered variables, we applied scale optimization using random 
forest (RF) Model Improvement Ratio (MIR) (Murphy et al. 2010). To do this we built a general 
random forest model including all variables at all scales (135 covariates) and applied a model 
selection approach using rf.modelSel function in rfUtilities R package (Murphy et al. 2010). This 
allowed us to identify the most parsimonious set of variables that maximizes model predictive 
ability while not including spurious relationships and statistical noise. This was done by selecting 
a RF model with the lowest error component based on the value of MIR (high MIR indicates 
most important covariates). For each tested variable we selected and retained the scale with the 
highest MIR value. We then ran the RF model with MIR model selection again to eliminate 
covariates (at their best scale) which were not adding to the model’s parsimony and performance.  

We also applied a correlation filter of 0.7 using Pearson’s correlation to remove highly correlated 
predictor variables. For each pair of correlated predictor variables, we eliminated the one with 
lower MIR (calculated in the previous step of variables selection), starting from the variable with 
the highest MIR to ensure that the variables with the highest predictive performance were 
retained in the final set of variables used further on in the logistic regression. 

2.4.2 Generalized linear models  

To reduce autocorrelation and generate the most robust habitat suitability models using the entire 
dataset for each species we applied a bootstrapping approach similar to Wan et al. (2019). This 
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involved randomly sampling a subset of the data 50 times, each time fitting the logistic 
regression function. The final model was produced by averaging the 50 bootstrapped runs, each 
independently validated. 

To ensure that we maintained the correct proportion of presences and absences for each species 
(which, as shown by Cushman et al. 2017, is critical to unbiased estimates in SDM), in each 
bootstrap run, we sampled 20% of presences and 20% of absences for model training. The same 
proportion of presences and absences from the remaining data (independent validation) were 
then used for the validation of each bootstrap run. For five species (hartebeest, porcupine, 
stripped polecat, bat eared fox and cape fox) we were unable to sample 20% of the data due to 
high imbalance between presences and absences (Table 1). Therefore, for hartebeest, porcupine 
and striped polecat we sampled 15% of presences and 15% of absences, and for the remaining 
two species, with even lower proportion of absences, we sampled 10% of absences and 
presences.  

Due to extremely high imbalance between presences and absences we were not able to run 
logistic regression for several species. Irregularly occurring species such as baboon, giraffe and 
secretary bird had too few and clustered presences (<500). Conversely, at the extreme end of the 
abundance spectrum springhare, jackal, steenbok and hare could not be modelled effectively due 
to too few absences (<560) in the back-transformed binary data (Table 1). In the case of the latter 
four species, we tested linear regression on the density data but results were not satisfactory. 
These 4 species can be considered common and ubiquitous throughout the Kalahari. Although 
their abundance precluded modelling their probabilities of occurrence in relation covariates 
across the landscape, we displayed these 4 common species’ occurrence probabilities in relation 
to kraals (cattlepost) density for relative comparison with the other species (see section 3.2). This 
left us with total of 32 species for which we could model and predict habitat suitability. 

For each bootstrap iteration we then fitted a binomial generalized linear regression with logit as a 
link function using glm algorithm in R stats package (R Core Team. 2021). The final habitat 
suitability model represented an average of the 50 model coefficients for each model variable. 
We also calculated averaged p-value for each variable and standard error of the coefficients and 
p-value across the 50 bootstrapped runs. 

2.4.3 Model fit and prediction performance 

We measured the model fit for each species by calculating deviance explained for each of the 
glm runs and then averaging these values and calculating standard deviation across all 50 runs.  

Each bootstrapped glm model was also independently validated. We calculated several measures 
to assess predictive performance of each model: Kappa, PCC (Percent Correctly Classified), 
sensitivity, specificity, TSS (True Skill Statistic) and AUC (Area Under the ROC Curve) using 
the independent hold-out data. The PCC represents model accuracy calculated based on 
classification table (confusion matrix) and it ranges from 0-1 with higher values representing 
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higher accuracy of the model prediction. Sensitivity measures the number of recorded present 
sites correctly predicted and divided by the total number of recorded present sites. Specificity 
measures the same but for absences. Kappa statistic summarizes all the information in the 
confusion matrix and it can be interpreted as the percent assignment between presences and 
absences better than chance. TSS is considered a superior measure of model accuracy which 
corrects the dependence of Kappa on prevalence, while maintaining all the advantages of Kappa. 
TSS ranges from -1 to 1, with TSS higher than zero representing models with performance better 
than random. Finally, AUC index (0-1), also independent of prevalence, is considered a highly 
effective measure of the model performance and is calculated as area under the receiver 
operating characteristic (ROC) curve. The curve is constructed by plotting all possible thresholds 
to classify the scores into confusion matrices (Pearce & Ferrier, 2000; Allouche et al. 2006). 
AUC ranges from 0.5 for random assignment of presences and absences to 1 for perfect 
assignment of presences and absences; as a rule of thumb it is often thought that AUC > 0.7 
shows fair discrimination, > 0.8 good, and greater than 0.9 exceptional model performance. The 
final performance values for each of these performance matrices were averaged across all 50 
bootstrapped runs.  

We then generated habitat suitability maps for each 32 species as an average prediction of each 
50 bootstrapped models. This was done by transforming z value (the direct value of logistic 
regression prediction) into p (probability of occurrence) by applying the following equation:  

p = exp(z)/(1 + exp(z)) 

2.4.4 Biodiversity assessment 

Based on the habitat suitability maps we generated three biodiversity maps to highlight particular 
combinations of species by adding the habitat suitability layers of individual species (sensu 
Penjor et al. 2021). The first map represented biodiversity of large mammals and consisted of: 
eland, gemsbok, wildebeest, hartebeest, kudu, springbok, ostrich, lion, leopard, cheetah, wild 
dog, spotted hyena, brown hyena. The second map calculated biodiversity of medium to small 
species, thus all remaining species. The last map represented the total biodiversity.  
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3 RESULTS and DISCUSSION 

3.1 Habitat Suitability Models – species accounts 

The following pages contain 32 species accounts in alphabetical order of common name, 1 per 
page. 

Each page features: 

▪ Habitat suitability map displaying probability of occurrence surface across the AOI. 
 

▪ Table displaying statistics describing prediction performance of the final species model, 
averaged from 50 bootstrapped model runs. 
 

▪ Table displaying the best fit variables comprising the final model selected over 50 
bootstrap runs. The strength of each variable is shown along with statistical significance 
indicated in bold and with asterisks at p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). 
 

▪ Where space permitted, plsmo splines (locally weighted regression splines, LOWESS) of 
responses to top variables ranked according to model improvement ratio (MIR). Note that 
some variables with the highest MIR where not selected for the final model by random 
forest selection process (i.e. for some species splines are presented for variables not in 
final model). Table 2 provides a key to variable abbreviations displayed on x-axes of 
plsmo plots. 
 

Note that probability of occurrence is tightly correlated with abundance/population density, i.e. 
abundance typically increases proportionally as probability of occurrence increases. 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.66 0.01

Kappa statistic 0.26 0.03

Sensitivity 0.48 0.09

Specificity 0.77 0.09

True skill statistic (TSS) 0.26 0.03

Percent correctly 

classified (PCC) 0.63 0.01

Deviance explained 0.93 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -11.577 0.63696 0.147 0.022

Pans 4 -20.946 0.77845 0.021 * 0.005 0.560

Roads (sand) 8 -17.919 1.13521 0.173 0.029 0.642

Soil (bulk density) 4 0.045 0.00395 0.358 0.041 0.583

Soil (clay content) 8 0.004 0.00046 0.413 0.038 0.875

Soil (Nitrogen) 8 -0.006 0.00016 0.002 ** 0.001 0.665

Soil (sand content) 8 0.009 0.00035 0.041 * 0.010 0.694

Soil (organic carbon) 8 0.029 0.00177 0.134 0.024 0.789

Vegetation continuous field 8 0.294 0.05778 0.405 0.041 0.924

Land use (WM A) 8 1.311 0.01839 5.83E-15 *** 2.73E-15 0.974

 

 

 

 

Model Prediction Performance 

 

 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.76 0.01

Kappa statistic 0.40 0.02

Sensitivity 0.78 0.18

Specificity 0.63 0.18

True skill statistic (TSS) 0.40 0.02

Percent correctly 

classified (PCC) 0.70 0.01

Deviance explained 0.80 0.02

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -9.099 1.22005 0.36968 0.04031

Kraals 32 11.749 0.77247 0.16831 0.03091 0.547

Pans 8 51.444 2.49437 0.04621 * 0.01388 0.644

Land use (CGA) 8 -2.130 0.04283 2.21E-05 *** 1.72E-05 0.326

Roads (calcrete) 8 -45.380 5.53038 0.39915 0.04105 0.130

Roads (paved) 8 -3625.470 100.11468 0.00022 *** 4.31E-05 0.069

Roads (sand) 8 77.797 4.09846 0.05335 0.01500 0.701

Soil (bulk density) 4 -0.101 0.00753 0.18074 0.02969 0.532

Soil (clay content) 8 0.028 0.00082 0.00061 *** 0.00038 0.653

Soil (Nitrogen) 8 -0.004 0.00032 0.20603 0.03630 0.708

Soil (sand content) 4 0.036 0.00074 5.7E-10 *** 4.68E-10 0.614

Soil (organic carbon) 8 -0.050 0.00400 0.18252 0.03860 1.000

Vegetation continuous field 8 -2.936 0.07998 0.00073 *** 0.00046 0.601

Land use (WM A) 8 -0.335 0.03269 0.25226 0.03117 0.498

 

 
 
 

 

 

Model Prediction Performance 

 

 
 
 
 
 
 
 

General Linear Model from 50 bootstrap runs  
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.82 0.01

Kappa statistic 0.52 0.02

Sensitivity 0.72 0.03

Specificity 0.80 0.02

True skill statistic (TSS) 0.52 0.02

Percent correctly 

classified (PCC) 0.76 0.01

Deviance explained 0.77 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 5.16713 0.79982 0.40829 0.04261

Precipitation 2 -0.57779 0.00563 4.93E-33 *** 3.66E-33 0.810

Roads (sand) 8 -58.44541 2.08187 0.00194 ** 0.00060 1.000

Soil (bulk density) 4 -0.21363 0.00462 6.81E-08 *** 5.84E-08 0.653

Soil (clay content) 8 0.06206 0.00055 2.40E-35 *** 2.33E-35 0.654

Soil (sand content) 8 0.04333 0.00052 1.82E-23 *** 1.32E-23 0.531

 

 

 

 

 

Model Prediction Performance 

 

 
 

 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.67 0.02

Kappa statistic 0.31 0.02

Sensitivity 0.90 0.05

Specificity 0.41 0.05

True skill statistic (TSS) 0.31 0.02

Percent correctly 

classified (PCC) 0.65 0.01

Deviance explained 0.94 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -23.367 0.51591 0.00011 *** 5.78E-05

Soil (bulk density) 4 0.219 0.00367 4.57E-08 *** 2.85E-08 0.609

Soil (sand content) 8 -0.007 0.00031 0.06696 0.01570 0.738

Soil (organic carbon) 4 -0.065 0.00111 1.16E-08 *** 7.45E-09 0.715

 

 

 

 

 

Model Prediction Performance 

 

 
 
 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.66 0.03

Kappa statistic 0.30 0.05

Sensitivity 0.77 0.15

Specificity 0.52 0.13

True skill statistic (TSS) 0.30 0.05

Percent correctly 

classified (PCC) 0.65 0.03

Deviance explained 0.90 0.02

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 34.64282 2.57557 0.18854 0.02971

Pans 4 -27.71192 2.62857 0.26197 0.03488 0.852

Precipitation 8 -0.22070 0.01563 0.18232 0.03511 1.000

Soil (bulk density) 4 -0.26261 0.01465 0.09309 0.02714 0.517

Soil (clay content) 8 0.00710 0.00147 0.51438 0.04228 0.604

Soil (Nitrogen) 8 0.00111 0.00051 0.52065 0.03940 0.615

Soil (sand content) 8 0.01022 0.00141 0.38668 0.04007 0.683

Vegetation continuous field 8 -3.31418 0.18890 0.09995 0.02338 0.502

Land use (WM A) 8 1.80520 0.05463 0.00112 ** 0.00064 0.560

 

 

 

 

 

Model Prediction Performance 

 

 
 

 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.62 0.01

Kappa statistic 0.20 0.01

Sensitivity 0.58 0.06

Specificity 0.62 0.06

True skill statistic (TSS) 0.20 0.01

Percent correctly 

classified (PCC) 0.60 0.01

Deviance explained 0.97 0.00

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 2.46137 0.03754 2.36E-13 *** 1.93E-13

Vegetation greeness (NDVI) 8 6.71393 0.11096 2.90E-07 *** 1.31E-07 0.606

Precipitation 2 -0.00319 0.00021 0.13548 0.02670 1.000

Soil (clay content) 8 0.00417 0.00011 0.00024 *** 0.00017 0.566

Soil (Nitrogen) 8 -0.00617 4.72E-05 7.05E-63 *** 6.91E-63 0.773

Vegetation continuous field 8 0.38454 0.01218 0.00316 ** 0.00104 0.589

 

 

 

 

 

Model Prediction Performance 

 

 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -31.73244 1.14270 1.30E-05 *** 8.28E-06

Soil (bulk density) 2 0.16725 0.00713 0.00025 *** 9.43E-05 0.736

Soil (clay content) 2 -0.00032 0.00045 0.53805 0.03898 1.000

Soil (sand content) 8 0.01414 0.00051 0.00411 ** 0.00202 0.699

Soil (organic carbon) 8 -0.05779 0.00172 0.00056 *** 0.00028 0.969

Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.66 0.02

Kappa statistic 0.28 0.03

Sensitivity 0.61 0.05

Specificity 0.67 0.06

True skill statistic (TSS) 0.28 0.03

Percent correctly 

classified (PCC) 0.64 0.01

Deviance explained 0.95 0.01

 

 

 

 

 

Model Prediction Performance 

 

 
 
 
 
 
 

 
General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.68 0.02

Kappa statistic 0.32 0.03

Sensitivity 0.52 0.09

Specificity 0.80 0.09

True skill statistic (TSS) 0.32 0.03

Percent correctly 

classified (PCC) 0.66 0.01

Deviance explained 0.93 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 24.02432 0.54004 3.31E-06 *** 3.00E-06

Land use (PA) 8 -0.86442 0.02471 0.00328 ** 0.00226 0.744

Pans 8 -83.35296 1.80384 2.17E-06 *** 1.10E-06 0.632

Soil (clay content) 8 0.00247 0.00040 0.49421 0.04145 1.000

Soil (Nitrogen) 8 -0.00784 0.00022 0.00047 *** 0.00027 0.746

Soil (sand content) 8 -0.02538 0.00061 1.18E-05 *** 8.37E-06 0.856

Vegetation continuous field 8 0.50851 0.06379 0.33026 0.03355 0.857

Land use (WM A) 8 0.19702 0.02538 0.30556 0.04106 0.671

 

 

 

 

 

Model Prediction Performance 

 

 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.69 0.01

Kappa statistic 0.32 0.02

Sensitivity 0.75 0.06

Specificity 0.57 0.06

True skill statistic (TSS) 0.32 0.02

Percent correctly 

classified (PCC) 0.66 0.01

Deviance explained 0.90 0.01

 

 

 

 

 

Model Prediction Performance 

 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 

 

 

 

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 10.39502 0.64701 0.12133 0.02774

Kraals (inside fenced farms) 32 -4.58818 0.28427 0.16927 0.03080 0.289

Kraals 16 -4.78265 0.06204 1.78E-15 *** 1.18E-15 0.501

Pans 8 56.74267 0.93455 1.64E-10 *** 1.07E-10 0.662

Land use (CGA) 8 -0.06805 0.02891 0.49085 0.03324 0.359

Precipitation 2 -0.01572 0.00041 0.00036 *** 0.00016 0.830

Roads (calcrete) 8 -246.03053 3.17345 4.43E-14 *** 3.45E-14 0.381

Roads (paved) 8 62.13118 3.27976 0.06307 0.01550 0.078

Roads (sand) 8 35.25201 1.68573 0.03987 * 0.01595 0.428

Soil (bulk density) 4 -0.02894 0.00469 0.36551 0.04164 0.786

Soil (clay content) 8 -0.00256 0.00030 0.35517 0.04051 0.662

Soil (sand content) 8 -0.00774 0.00025 0.00230 ** 0.00143 0.710

Soil (organic carbon) 8 -0.00590 0.00127 0.45883 0.03822 0.726

Vegetation continuous field 8 0.29856 0.02868 0.30612 0.04252 0.876

Land use (WM A) 8 0.78806 0.01961 1.20E-05 *** 1.03E-05 0.663
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.70 0.01

Kappa statistic 0.43 0.01

Sensitivity 0.93 0.01

Specificity 0.49 0.01

True skill statistic (TSS) 0.43 0.01

Percent correctly 

classified (PCC) 0.71 0.01

Deviance explained 0.88 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 0.73862 0.00835 1.24E-19 *** 1.10E-19

Kraals 32 0.89838 0.02313 1.38E-10 *** 7.73E-11 0.411

Vegetation continuous field 8 -2.40388 0.01791 6.37E-53 *** 5.93E-53 0.672

 

 

 

 

 

Model Prediction Performance 

 

 
 

 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.91 0.01

Kappa statistic 0.70 0.02

Sensitivity 0.83 0.01

Specificity 0.88 0.02

True skill statistic (TSS) 0.70 0.02

Percent correctly 

classified (PCC) 0.85 0.01

Deviance explained 0.55 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -1.71569 1.44325 0.52695 0.03708

Kraals (inside fenced farms) 32 -9.62099 0.52534 0.11601 0.02628 0.533

Kraals 32 -15.10741 0.14357 4.26E-33 *** 2.54E-33 0.692

Precipitation 2 0.03209 0.00067 1.68E-05 *** 1.44E-05 0.765

Roads (calcrete) 8 -57.33275 5.71275 0.24393 0.03674 0.454

Soil (bulk density) 4 -0.00500 0.00864 0.56116 0.04000 0.508

Soil (clay content) 4 0.00414 0.00067 0.41326 0.03958 0.513

Soil (sand content) 8 -0.00087 0.00046 0.61397 0.04014 0.716

Soil (organic carbon) 8 0.08029 0.00232 0.00024 *** 9.72E-05 0.517

Vegetation continuous field 8 -5.17011 0.05747 4.35E-21 *** 2.31E-21 1.000
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.93 0.00

Kappa statistic 0.69 0.01

Sensitivity 0.86 0.04

Specificity 0.84 0.04

True skill statistic (TSS) 0.69 0.01

Percent correctly 

classified (PCC) 0.85 0.00

Deviance explained 0.52 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 13.50091 0.14472 2.12E-14 *** 9.95E-15

Kraals (inside fenced farms) 32 -34.09650 0.26945 1.44E-43 *** 1.41E-43 0.470

Kraals 16 -18.86751 0.12272 5.52E-170 *** 0 1.000

Vegetation greeness (NDVI) 8 -8.85758 0.15367 1.55E-07 *** 1.17E-07 0.453

Precipitation 8 -0.02191 0.00038 1.91E-08 *** 1.32E-08 0.476

Roads (calcrete) 8 -266.85987 1.73294 9.01E-52 *** 8.26E-52 0.663

Soil (clay content) 8 0.01266 0.00023 7.38E-05 *** 5.02E-05 0.366

Soil (sand content) 8 -0.01741 0.00021 3.34E-13 *** 1.67E-13 0.449

Soil (organic carbon) 8 0.03150 0.00114 0.01088 * 0.00571 0.388
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.72 0.01

Kappa statistic 0.36 0.02

Sensitivity 0.67 0.06

Specificity 0.69 0.06

True skill statistic (TSS) 0.36 0.02

Percent correctly 

classified (PCC) 0.68 0.01

Deviance explained 0.90 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -46.25847 0.90247 7.26E-11 *** 3.51E-11

Vegetation greeness (NDVI) 8 -45.59596 0.66940 6.52E-13 *** 5.04E-13 0.647

Soil (bulk density) 2 0.33492 0.00598 6.67E-12 *** 4.74E-12 0.786

Soil (clay content) 8 0.02308 0.00053 1.92E-08 *** 9.27E-09 0.610

Soil (Nitrogen) 8 -0.01038 0.00023 6.98E-09 *** 5.73E-09 0.542

Soil (sand content) 4 0.00874 0.00033 0.01179 * 0.00544 0.617

Vegetation continuous field 4 5.96151 0.07979 8.42E-24 *** 3.99E-24 0.671
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General Linear Model from 50 bootstrap runs 

 

 



31 
 

Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.75 0.02

Kappa statistic 0.43 0.04

Sensitivity 0.78 0.07

Specificity 0.65 0.07

True skill statistic (TSS) 0.43 0.04

Percent correctly 

classified (PCC) 0.71 0.02

Deviance explained 0.82 0.02

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -78.36857 1.95183 1.34E-05 *** 6.13E-06

Pans 8 31.33744 3.53400 0.33038 0.03903 0.349

Roads (sand) 8 -115.03926 2.91257 0.00120 ** 0.00040 0.359

Soil (bulk density) 4 0.41761 0.01136 6.46E-05 *** 1.75E-05 0.523

Soil (clay content) 8 0.00707 0.00139 0.45165 0.04508 0.516

Soil (Nitrogen) 4 -0.01275 0.00039 0.00171 ** 0.00065 0.793

Soil (sand content) 8 0.02264 0.00110 0.04080 * 0.01487 1.000

Soil (organic carbon) 8 0.11876 0.00437 0.00500 ** 0.00137 0.865

Vegetation continuous field 8 -1.79786 0.11181 0.10119 0.02538 0.739

Land use (WM A) 8 1.50010 0.03353 3.69E-06 *** 1.16E-06 0.652
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.76 0.01

Kappa statistic 0.40 0.01

Sensitivity 0.90 0.01

Specificity 0.50 0.01

True skill statistic (TSS) 0.40 0.01

Percent correctly 

classified (PCC) 0.70 0.00

Deviance explained 0.83 0.00

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -5.03925 0.32694 0.18287 0.03454

Kraals (inside fenced farms) 32 -8.94094 0.14697 3.26E-06 *** 1.46E-06 0.397

Kraals 32 -2.38391 0.01294 5.73E-61 *** 5.51E-61 0.637

Vegetation greeness (NDVI) 8 -26.60666 0.12663 6.76E-94 *** 6.60E-94 0.985

Pans 8 59.65452 0.70521 3.80E-13 *** 2.71E-13 0.566

Precipitation 4 -0.02778 0.00029 2.11E-24 *** 1.39E-24 1.000

Soil (bulk density) 4 0.06318 0.00191 0.00419 ** 0.00160 0.493

Soil (clay content) 8 -0.00633 0.00021 0.00810 ** 0.00498 0.740

Soil (Nitrogen) 8 0.00580 5.31E-05 6.45E-40 *** 6.32E-40 0.698

Soil (sand content) 8 0.00045 0.00018 0.53982 0.04068 0.572

Soil (organic carbon) 8 -0.03386 0.00081 6.89E-05 *** 3.12E-05 0.680
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.74 0.02

Kappa statistic 0.39 0.02

Sensitivity 0.86 0.06

Specificity 0.54 0.06

True skill statistic (TSS) 0.39 0.02

Percent correctly 

classified (PCC) 0.70 0.01

Deviance explained 0.84 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 54.12511 1.38449 1.07E-05 *** 3.25E-06

Kraals (inside fenced farms) 32 -7.82635 0.62061 0.23414 0.03229 0.218

Land use (PA) 8 -10.62171 0.24954 3.01E-06 *** 1.57E-06 0.587

Pans 8 -258.59245 2.85245 8.59E-22 *** 5.38E-22 1.000

Land use (CGA) 8 -9.99312 0.24093 5.23E-06 *** 2.72E-06 0.322

Roads (calcrete) 8 113.66397 5.38519 0.05772 0.01122 0.289

Roads (paved) 8 -233.83405 10.19031 0.03776 * 0.01068 0.079

Roads (sand) 8 -48.29935 3.15064 0.15727 0.03145 0.837

Soil (bulk density) 4 -0.29126 0.00808 2.17E-05 *** 7.52E-06 0.753

Soil (clay content) 8 -0.04540 0.00070 8.65E-11 *** 6.96E-11 0.880

Soil (Nitrogen) 8 0.00419 0.00022 0.10004 0.02188 0.655

Soil (sand content) 8 0.00548 0.00063 0.38052 0.04412 0.685

Vegetation continuous field 8 -3.07373 0.08104 0.00026 *** 0.00010 0.779

Land use (WM A) 8 -9.15874 0.24299 5.14E-05 *** 2.52E-05 0.796
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.71 0.01

Kappa statistic 0.36 0.02

Sensitivity 0.75 0.07

Specificity 0.61 0.07

True skill statistic (TSS) 0.36 0.02

Percent correctly 

classified (PCC) 0.68 0.01

Deviance explained 0.91 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 8.85730 0.08027 7.02E-27 *** 6.65E-27

Vegetation greeness (NDVI) 32 -19.16991 0.43543 2.73E-05 *** 1.78E-05 0.879

Soil (clay content) 8 -0.00304 0.00026 0.35222 0.03647 0.692

Soil (Nitrogen) 8 0.00009 0.00010 0.59546 0.03460 0.689

Soil (organic carbon) 8 -0.09111 0.00101 3.98E-15 *** 3.23E-15 1.000
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.74 0.01

Kappa statistic 0.37 0.01

Sensitivity 0.65 0.06

Specificity 0.72 0.06

True skill statistic (TSS) 0.37 0.01

Percent correctly 

classified (PCC) 0.68 0.01

Deviance explained 0.86 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -24.61441 0.60759 3.57E-05 *** 1.96E-05

Kraals (inside fenced farms) 32 30.82329 0.41329 1.26E-15 *** 1.21E-15 0.238

Kraals 32 -3.31274 0.04525 6.81E-17 *** 4.57E-17 0.614

Vegetation greeness (NDVI) 8 -13.48968 0.20623 1.33E-11 *** 9.07E-12 0.687

Land use (PA) 8 1.40076 0.10121 0.24796 0.03491 0.323

Pans 8 35.29281 1.06237 0.00600 ** 0.00185 0.559

Land use (CGA) 8 2.78232 0.10591 0.02019 * 0.00600 0.300

Precipitation 8 -0.05119 0.00046 1.48E-36 *** 1.26E-36 1.000

Roads (calcrete) 8 -28.27570 1.95834 0.15869 0.03014 0.276

Roads (paved) 8 135.49750 2.25287 8.50E-12 *** 8.13E-12 0.226

Roads (sand) 8 -18.25081 1.36386 0.18915 0.02995 0.464

Soil (bulk density) 4 0.09968 0.00343 0.00627 ** 0.00311 0.465

Soil (clay content) 8 0.01878 0.00040 3.15E-07 *** 2.16E-07 0.539

Soil (sand) 8 0.01126 0.00024 2.77E-06 *** 1.17E-06 0.499

Soil (organic carbon) 8 -0.00537 0.00115 0.47259 0.03939 0.494

Land use (WM A) 8 3.07828 0.09965 0.00759 ** 0.00192 0.720
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.65 0.01

Kappa statistic 0.25 0.01

Sensitivity 0.68 0.05

Specificity 0.56 0.05

True skill statistic (TSS) 0.25 0.01

Percent correctly 

classified (PCC) 0.62 0.01

Deviance explained 0.95 0.00

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 7.84500 0.11311 1.06E-10 *** 1.03E-10

Vegetation greeness (NDVI) 8 6.82366 0.16808 5.58E-05 *** 4.74E-05 0.711

Pans 8 17.18037 0.78001 0.02814 * 0.01120 0.450

Precipitation 8 -0.03135 0.00037 5.02E-27 *** 2.85E-27 1.000

Soil (clay content) 8 -0.00266 0.00024 0.22560 0.03974 0.509

Soil (Nitrogen) 8 -0.00377 6.10E-05 3.10E-11 *** 2.86E-11 0.534

Soil (sand content) 8 -0.00969 0.00016 1.44E-07 *** 1.40E-07 0.514

Soil (organic carbon) 8 0.01433 0.00102 0.15921 0.03224 0.507

Land use (WM A) 8 1.35881 0.00964 1.16E-57 *** 8.55E-58 0.552
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.79 0.01

Kappa statistic 0.48 0.02

Sensitivity 0.87 0.04

Specificity 0.61 0.04

True skill statistic (TSS) 0.48 0.02

Percent correctly 

classified (PCC) 0.74 0.01

Deviance explained 0.78 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -8.12523 0.60966 0.22002 0.04175

Kraals 32 -7.33859 0.05860 1.11E-28 *** 6.76E-29 0.782

Pans 8 19.80785 0.82718 0.02929 * 0.00867 0.533

Precipitation 8 -0.03924 0.00047 2.12E-19 *** 1.53E-19 0.944

Roads (sand) 8 -8.29998 1.54755 0.44813 0.04079 0.545

Soil (bulk density) 4 0.08497 0.00438 0.06811 0.01754 0.605

Soil (clay content) 8 -0.02082 0.00038 6.36E-07 *** 6.22E-07 0.760

Soil (Nitrogen) 4 -0.00688 0.00010 4.87E-13 *** 4.77E-13 1.000

Soil (sand content) 4 0.00037 0.00026 0.53056 0.04165 0.826

Soil (organic carbon) 8 0.06950 0.00148 9.26E-05 *** 8.84E-05 0.735

Vegetation continuous field 8 -2.22358 0.03321 3.91E-13 *** 3.83E-13 0.996
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.74 0.01

Kappa statistic 0.39 0.01

Sensitivity 0.68 0.04

Specificity 0.71 0.04

True skill statistic (TSS) 0.39 0.01

Percent correctly 

classified (PCC) 0.69 0.01

Deviance explained 0.87 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 7.10192 0.04736 3.65E-61 *** 3.57E-61

Vegetation greeness (NDVI) 8 -13.27717 0.12781 6.02E-29 *** 5.33E-29 0.642

Pans 8 44.13687 0.88254 7.87E-07 *** 5.89E-07 0.566

Precipitation 2 -0.07289 0.00034 1.25E-132 *** 7.46E-133 1.000

Soil (clay content) 8 -0.02242 0.00017 8.91E-51 *** 8.61E-51 0.704

Soil (organic carbon) 8 0.00044 0.00075 0.55295 0.03818 0.465

 

 

 

 

 

Model Prediction Performance 

 

 
 

 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.71 0.01

Kappa statistic 0.44 0.01

Sensitivity 0.92 0.04

Specificity 0.51 0.04

True skill statistic (TSS) 0.44 0.01

Percent correctly 

classified (PCC) 0.72 0.01

Deviance explained 0.83 0.01
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General Linear Model from 50 bootstrap runs 

 

 

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -16.47896 2.02708 0.42358 0.04573

Kraals (inside fenced farms) 32 0.66285 1.36673 0.67058 0.02792 0.106

Kraals 32 0.55866 0.06670 0.34584 0.04297 0.500

Vegetation greeness (NDVI) 2 -9.32024 1.03789 0.29875 0.03912 0.710

Land use (PA) 8 57.88922 1.28423 0.00045 *** 0.00027 0.229

Pans 8 -142.23571 3.87522 0.00048 *** 0.00032 0.518

Land use (CGA) 8 60.87967 1.32050 0.00029 *** 0.00019 0.223

Roads (calcrete) 8 42.79255 5.75889 0.35892 0.04441 1.000

Roads (paved) 8 -1933.17288 58.31364 0.00816 ** 0.00144 0.027

Roads (sand) 8 87.11592 4.03334 0.03588 * 0.01071 0.657

Soil (bulk density) 4 -0.12290 0.01086 0.25098 0.03916 0.483

Soil (clay content) 8 0.00199 0.00158 0.44391 0.04148 0.645

Soil (Nitrogen) 8 0.01402 0.00058 0.00686 ** 0.00273 0.603

Soil (sand content) 8 -0.03512 0.00078 2.35E-05 *** 1.86E-05 0.600

Soil (organic carbon) 8 -0.10871 0.00795 0.14015 0.02582 0.583

Vegetation continuous field 4 -0.08778 0.10270 0.50365 0.03969 0.678

Land use (WM A) 8 60.18960 1.30134 0.00030 *** 0.00019 0.737
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.70 0.01

Kappa statistic 0.32 0.02

Sensitivity 0.76 0.11

Specificity 0.56 0.11

True skill statistic (TSS) 0.32 0.02

Percent correctly 

classified (PCC) 0.66 0.01

Deviance explained 0.90 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -32.44789 0.65680 8.76E-09 *** 5.07E-09

Pans 8 -13.95720 1.30575 0.34654 0.03798 0.461

Roads (sand) 8 -54.20551 1.17690 0.00013 *** 9.19E-05 0.454

Soil (bulk density) 2 0.04317 0.00359 0.20234 0.02882 0.510

Soil (clay content) 8 0.01287 0.00061 0.02644 * 0.00757 0.630

Soil (Nitrogen) 8 0.00556 0.00018 0.00280 ** 0.00088 0.558

Soil (sand content) 8 0.03534 0.00039 5.63E-20 *** 2.46E-20 0.844

Soil (organic carbon) 8 -0.09444 0.00191 3.33E-07 *** 1.98E-07 0.724

Vegetation continuous field 8 2.01154 0.04887 0.00019 *** 8.28E-05 0.575

Land use (WM A) 8 -0.03720 0.01535 0.58955 0.03752 0.592

 

Model Prediction Performance 

 

 
 
 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.79 0.02

Kappa statistic 0.50 0.04

Sensitivity 0.94 0.06

Specificity 0.56 0.07

True skill statistic (TSS) 0.50 0.04

Percent correctly 

classified (PCC) 0.75 0.02

Deviance explained 0.74 0.03

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -1.18437 0.94915 0.47802 0.03888

Kraals (inside fenced farms) 32 -12.65445 1.06946 0.21724 0.03708 0.440

Pans 8 206.53042 4.99676 1.07E-07 *** 4.78E-08 0.929

Precipitation 8 0.79794 0.01320 1.39E-08 *** 1.23E-08 1.000

Roads (sand) 8 -58.87364 3.62582 0.11590 0.02732 0.414

Soil (clay content) 8 0.00050 0.00130 0.48756 0.03707 0.490

Soil (Nitrogen) 8 -0.01378 0.00039 0.00035 *** 0.00023 0.666

Soil (sand content) 8 -0.01470 0.00131 0.24057 0.03609 0.543

Land use (WM A) 8 1.62736 0.04363 0.00058 *** 0.00041 0.599
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.71 0.01

Kappa statistic 0.37 0.02

Sensitivity 0.78 0.02

Specificity 0.60 0.02

True skill statistic (TSS) 0.37 0.02

Percent correctly 

classified (PCC) 0.69 0.01

Deviance explained 0.89 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -3.87055 0.19764 0.07321 0.01945

Vegetation greeness (NDVI) 8 8.10034 0.31521 0.02451 * 0.01591 0.712

Land use (PA) 0.25 1.52260 0.01863 1.82E-19 *** 1.65E-19 0.594

Precipitation 8 -0.03449 0.00060 6.61E-12 *** 4.43E-12 0.987

Soil (clay content) 8 0.00515 0.00032 0.15084 0.03097 0.781

Soil (Nitrogen) 8 -0.00833 0.00011 3.34E-21 *** 2.28E-21 1.000

Soil (sand content) 8 0.00901 0.00026 0.00096 *** 0.00074 0.707

Soil (organic carbon) 8 -0.00175 0.00141 0.54519 0.03654 0.688

Vegetation continuous field 8 -0.64233 0.03434 0.06307 0.01458 0.744

Land use (WM A) 8 1.49819 0.01798 1.68E-21 *** 1.38E-21 0.714
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.81 0.01

Kappa statistic 0.58 0.03

Sensitivity 0.88 0.03

Specificity 0.70 0.04

True skill statistic (TSS) 0.58 0.03

Percent correctly 

classified (PCC) 0.79 0.01

Deviance explained 0.77 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 7.76692 1.36037 0.42230 0.04313

Human population 32 0.07623 0.00398 0.03875 * 0.01114 0.335

Kraals (inside fenced farms) 32 -47.41727 1.30103 8.81E-06 *** 7.59E-06 0.262

Land use (PA) 8 -1.16310 0.60200 0.29831 0.03736 0.252

Pans 8 125.06296 2.26222 3.97E-07 *** 2.76E-07 0.652

Land use (CGA) 8 0.28542 0.61485 0.31738 0.03590 0.263

Precipitation 2 -0.05833 0.00098 7.09E-11 *** 6.09E-11 1.000

Roads (calcrete) 8 79.40684 3.54296 0.03050 * 0.00906 0.340

Roads (paved) 8 -61.04229 4.90473 0.23181 0.03341 0.087

Roads (sand) 8 -25.41130 1.93155 0.25392 0.03481 0.460

Soil (bulk density) 4 0.17114 0.00813 0.03479 * 0.01221 0.350

Soil (clay content) 8 -0.05080 0.00073 9.20E-14 *** 5.90E-14 0.721

Soil (sand content) 8 -0.02813 0.00052 5.66E-09 *** 5.07E-09 0.567

Soil (organic carbon) 8 -0.06784 0.00244 0.01238 * 0.00451 0.756

Vegetation continuous field 8 -0.29547 0.05855 0.42758 0.04320 0.574

Land use (WM A) 8 -0.11385 0.60666 0.30783 0.03427 0.408
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General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.75 0.01

Kappa statistic 0.44 0.02

Sensitivity 0.77 0.05

Specificity 0.67 0.05

True skill statistic (TSS) 0.44 0.02

Percent correctly 

classified (PCC) 0.72 0.01

Deviance explained 0.88 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -22.55371 0.39030 9.56E-10 *** 7.20E-10

Roads (sand) 8 -56.20781 1.93010 7.62E-05 *** 6.30E-05 0.929

Soil (clay content) 8 0.04369 0.00041 3.37E-34 *** 2.56E-34 0.958

Soil (Nitrogen) 8 -0.00228 0.00020 0.26881 0.04223 0.845

Soil (sand content) 8 0.02565 0.00041 4.02E-10 *** 3.75E-10 0.680

Vegetation continuous field 8 -2.61795 0.04709 4.66E-07 *** 2.66E-07 0.852

 

 

 

 

 

Model Prediction Performance 

 

 
 

 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.86 0.02

Kappa statistic 0.59 0.03

Sensitivity 0.82 0.11

Specificity 0.77 0.12

True skill statistic (TSS) 0.59 0.03

Percent correctly 

classified (PCC) 0.80 0.02

Deviance explained 0.63 0.04

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 60.80101 1.74145 0.00057 *** 0.00020

Vegetation greeness (NDVI) 8 -71.84951 2.11388 0.00084 *** 0.00056 1.000

Roads (sand) 8 -536.68030 43.14487 0.03914 * 0.01954 0.549

Soil (clay content) 8 0.01865 0.00195 0.31573 0.04199 0.806

Soil (Nitrogen) 8 -0.01716 0.00079 0.05824 0.01021 0.547

Soil (sand content) 8 -0.04399 0.00199 0.02679 * 0.00909 0.730

Soil (organic carbon) 2 -0.18322 0.00638 0.00219 ** 0.00058 0.757

Land use (WM A) 8 4.52135 0.08721 1.98E-07 *** 1.34E-07 0.576

 

 

 

 

 

Model Prediction Performance 

 

 
 

 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.90 0.02

Kappa statistic 0.72 0.05

Sensitivity 0.93 0.04

Specificity 0.79 0.05

True skill statistic (TSS) 0.72 0.05

Percent correctly 

classified (PCC) 0.86 0.02

Deviance explained 0.53 0.05

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) 35.33664 2.30080 0.11212 0.02491

Kraals (inside fenced farms) 32 32.96182 1.72122 0.07646 0.01689 0.445

Kraals 32 -14.68426 0.69617 0.01422 * 0.00501 0.430

Land use (CGA) 8 4.58459 0.21958 0.02244 * 0.00519 0.497

Soil (bulk density) 4 -0.32835 0.01656 0.04492 * 0.01299 0.654

Soil (clay content) 4 0.03178 0.00145 0.04604 * 0.00966 0.739

Soil (Nitrogen) 4 -0.01716 0.00058 9.35E-06 *** 3.26E-06 1.000

Soil (sand content) 4 0.02108 0.00169 0.21849 0.03480 0.855

Soil (organic carbon) 4 0.02976 0.00522 0.46226 0.03729 0.487

Land use (WM A) 8 3.67180 0.09557 0.00059 *** 0.00041 0.660

 

 

 

 

 

Model Prediction Performance 

 

 
 

 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.77 0.01

Kappa statistic 0.43 0.03

Sensitivity 0.82 0.09

Specificity 0.61 0.09

True skill statistic (TSS) 0.43 0.03

Percent correctly 

classified (PCC) 0.72 0.01

Deviance explained 0.82 0.02

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -21.01306 0.40336 3.33E-09 *** 1.35E-09

Kraals 32 -1.00825 0.06340 0.09518 0.02294 0.503

Vegetation greeness (NDVI) 8 21.67117 0.76721 0.00214 ** 0.00103 0.569

Pans 8 -9.60280 2.05900 0.44045 0.03749 0.464

Precipitation 4 -0.03521 0.00090 0.00030 *** 0.00017 0.527

Soil (clay content) 4 0.02538 0.00060 3.78E-05 *** 2.33E-05 0.678

Soil (Nitrogen) 8 -0.00430 0.00015 0.01121 * 0.00570 0.586

Soil (sand content) 8 0.02203 0.00046 5.82E-06 *** 4.95E-06 0.718

Soil (organic carbon) 8 0.00609 0.00345 0.47206 0.04324 1.000

Vegetation continuous field 4 1.67889 0.05688 0.00063 *** 0.00032 0.887

 

 

 

 

 

Model Prediction Performance 

 

 
 

 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.72 0.01

Kappa statistic 0.33 0.02

Sensitivity 0.72 0.06

Specificity 0.61 0.06

True skill statistic (TSS) 0.33 0.02

Percent correctly 

classified (PCC) 0.66 0.01

Deviance explained 0.87 0.01

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -2.71119 0.65228 0.47414 0.03952

Kraals (inside fenced farms) 32 11.27611 0.44355 0.02521 * 0.00909 0.368

Kraals 32 -3.46168 0.05471 6.56E-06 *** 4.42E-06 0.563

Vegetation greeness (NDVI) 8 -5.46623 0.23681 0.02468 * 0.00577 0.566

Land use (PA) 8 -2.69392 0.16815 0.08089 0.02112 0.257

Pans 8 42.08562 1.62633 0.01371 * 0.00496 0.403

Land use (CGA) 8 -3.31195 0.17382 0.04833 * 0.01970 0.389

Precipitation 4 -0.04118 0.00052 2.30E-19 *** 1.42E-19 1.000

Roads (calcrete) 8 -6.58551 2.63534 0.50847 0.04226 0.302

Roads (paved) 8 123.41092 1.90212 1.99E-07 *** 1.19E-07 0.152

Roads (sand) 8 6.29185 1.26051 0.56495 0.04072 0.287

Soil (bulk density) 4 0.07997 0.00412 0.08993 0.02992 0.433

Soil (clay content) 8 -0.00315 0.00043 0.31371 0.03759 0.473

Soil (sand content) 8 -0.00336 0.00033 0.27925 0.03781 0.550

Soil (organic carbon) 8 -0.04358 0.00136 0.00152 ** 0.00059 0.517

Land use (WM A) 8 -1.31347 0.16245 0.32375 0.04018 0.475

 

 

 

 

 

Model Prediction Performance 

 

 
 

 

 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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Performance Statistic  

[50 bootstrap runs]

M ean 

Value

Standard 

Deviation

Area under curve (AUC) 0.83 0.01

Kappa statistic 0.56 0.02

Sensitivity 0.87 0.05

Specificity 0.69 0.05

True skill statistic (TSS) 0.56 0.02

Percent correctly 

classified (PCC) 0.78 0.01

Deviance explained 0.73 0.02

Variable Scale (km) M ean Coefficient Standard Error (Coeff) p-value Significance Standard Error (p-value) M odel Improvement Ratio

(Intercept) -0.54620 0.85592 0.54625 0.03898

Kraals 32 2.02595 0.02992 2.11E-14 *** 1.31E-14 0.406

Vegetation greeness (NDVI) 8 -9.76281 0.52725 0.09281 0.02031 0.599

Pans 8 -22.41091 1.98387 0.22051 0.03436 0.392

Soil (bulk density) 4 -0.15374 0.00523 0.00513 ** 0.00225 0.415

Soil (clay content) 8 0.04018 0.00063 1.02E-10 *** 8.43E-11 0.655

Soil (Nitrogen) 8 0.00449 0.00020 0.03229 * 0.01665 0.439

Soil (sand content) 8 0.01996 0.00052 9.27E-05 *** 7.57E-05 0.680

Soil (organic carbon) 8 0.02083 0.00301 0.30965 0.03832 0.834

Land use (WM A) 8 1.40329 0.02187 2.66E-13 *** 2.34E-13 0.400

 

 

 

 

Model Prediction Performance 

 

 
 
 

 
 
 
 
 
 
 

General Linear Model from 50 bootstrap runs 
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3.1.1 Broad patterns of species occurrence in the AOI 

Most smaller wildlife species’ habitat suitability is not strongly predicted by variables of human 
influence (i.e. kraals, human population, land use type, roads), and some models contained no 
anthropogenic factors at all (bat-eared fox, cape fox, genet, kori bustard). Except for brown 
hyena and ostrich, large wildlife species are more negatively impacted by human-livestock 
disturbance than small wildlife species. This is among the strongest visible patterns in the large-
bodied species maps; cool blue areas of low or zero occurrence probability mirroring kraals 
distribution. Among species, the impact of kraals occurred most strongly - almost consistently - 
at the largest variable scale measured (32 km kernel radius; see Figure 4). This shows that kraals 
have a large and, importantly, broad-scale effect on the occurrence patterns of the largest species. 
Of six large antelope species, KraalsNF (32 km scale) variable was selected and appeared as 
negative coefficient with high significance in the final models of five. Gemsbok differed only in 
16 km being the strongest KraalsNF scale and again highly significant. Among large carnivores, 
cheetah and lion showed similar response to large antelope, while KraalsNF (32 km scale) also 
appeared with negative coefficient in the wild dog model, although not significant. 
Comparatively, among the 19 smaller species, KraalsNF appeared as a negative coefficient in the 
models of four, and significant in one of those (warthog), similar to large antelopes. Human-
livestock activity at a broad spatial scale is the overwhelming determinant of large-bodied 
wildlife species distributions, especially herbivores, in the Kalahari landscape.  

A second broad pattern is a disproportion of high habitat suitability in the southwest portion of 
the AOI relative to the northeast portion, among many species large and small. Notable 
exceptions include porcupine and wild dog, whose probability of occurrence distributions appear 
to mirror the declining rainfall gradient from northeast to southwest. 

Note the HS models were developed without the inclusion of fences as a variable. Thus, large 
antelopes may have predicted occurrence in areas that are fenced ranching blocks where free-
ranging populations are in fact excluded by the filter/barrier effect of fences. Fences with varying 
resistances to wildlife species movement will be introduced into Phase 2 models. 

 



51 
 

 

Figure 4  Kraals density (kraals/km2) measured at the largest kernel density scale (32 km radius). This was the 

frequently selected scale for kraals density by multi-scale SDM model-building among species. Note encroachment 

into WMAs. 

3.1.2 Discussion of select variables influencing habitat suitability 

3.1.2.1 Soils 

Soils were, somewhat profoundly, the most consistent predictor variables. Multiple soils 
variables appeared in every species model with only one exception (duiker). In a sense they are 
the most fundamental and foundational ecosystem attributes, determining, along with 
precipitation, the first trophic level (vegetation) upon which the wildlife community is then 
structured. Soils are directly ingested by ungulates via mineral licks (most prominently at pans) 
because direct mineral supplementation is essential during lactation and to reset their complex 
ruminant digestion during seasonal transitions between food type and quality. Besides this 
notable direct link between soils and wildlife, the manifest nebulous indirect effects can only be 
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speculated. Other than greenness (NDVI) and tree cover (VCF), vegetation communities were 
unmodelled because we were unable to attain sufficiently precise data on vegetation. 
Unmodelled plant species distributions, compositions, and abundances almost certainly have 
large predictive power to wildlife species occurrences (e.g. Cushman and McGarigal 2003). The 
fact that soils are facilitating these plant communities must explain in part their huge contribution 
to the HS models. Vegetation type has obvious predictive value for herbivores, including small 
rodents (i.e. mice, gerbils), that scales up to carnivores and thus encompasses the entire wildlife 
community. One small/meso carnivore (Cape fox) and one insectivore (bat-eared fox) were 
predicted exclusively by soils. Certainly, grass and forb species are determined by soils which in 
turn determine termite species and their concentrations selected by bat-eared fox. Similarly, 
indirect effects may be speculated working from soils upward for every species modelled. 

3.1.2.2 NDVI 

NDVI is a measure of the density of photosynthetic vegetation covering a parcel of land, or more 
simply ‘greenness’. Areas with high NDVI value are characterized by both high biomass and 
high photosynthetic leaf area. Conversely, areas with low NDVI reflect areas that are dry and 
denuded. NDVI predicted positively for few species - only leopard, both hyenas and wild dog. 
For all large herbivore species for which NDVI appeared in the final model (gemsbok, 
hartebeest, kudu, ostrich, wildebeest), the coefficient was negative, and significant. This is 
counter to expectation, considering previous studies which related NDVI to broad patterns of 
antelope distribution measured by DWNP aerial surveys (Verlinden and Masogo 1997), and also 
for other bulk foragers (like cattle and buffalo (Kaszta et al. 2016) and elephants (Kaszta et al. 
2021)). A possible explanation is that highly mobile Kalahari antelopes aggregate in their highest 
concentrations during early wet season green up, i.e. freshly growing vegetation including the 
smallest shoots of grasses. Such areas would have a low or at best modest NDVI signature, as 
vegetation has just started to sprout against a late dry season backdrop. By the time grasses are 
mature and go to seed their nutritional quality has typically dropped dramatically. Some 
prominent Kalahari grasses such as Schmidtia kalahariensis which commonly forms near 
monocultures (i.e. the ‘Kalahari cornfield’) are unpalatable when mature due to acidic secretions 
that can even injure antelope mouthparts. Ruminant herbivores select vegetation based on its 
quality, and therefore the greenest landscapes (i.e. where plants are their largest and most 
mature), may be less attractive than effectively browner landscapes of more palatable and higher 
quality early growth vegetation (e.g. Kaszta et al. 2016). The same pattern of attraction happens 
at earliest stages after veld fire. Furthermore, Kalahari antelopes tend to favor areas of lower 
grass stature and less shrub cover due to predation risk by ambush. 

3.1.2.3 HP vs kraals vs land use 

Human population might be expected to appear in more HS models than it did. Of 32 species it 
only appeared in the final model for springbok. However, at the 32 km scale human population 
was highly correlated with kraals (correlation coefficient typically 0.95-0.98), thus human 
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population was frequently dropped during model building by the correlation filter. The density of 
kraals emerged as the superior explanatory variable of the two, perhaps in part because the 
variable captures finer resolution micro-settlements while HP was derived from major centres 
only and provided in coarse scale form without spatial precision. Furthermore, the density of 
kraals clustered around villages is proportional to the HP of those centres. 

Land use is similarly correlated with and a coarse categorical proxy of kraals: PAR being largely 
occupied by villages and cattleposts, WMA having only limited areas of encroachment and 
isolated around few villages, and PA being devoid of kraals with the exception of a few areas in 
CKGR just outside the AOI. 

3.1.2.4 KraalsNF vs KraalsF 

Most species that responded negatively to kraals, also responded negatively to kraals that were 
separated from the wildlife space by a fenced boundary. This is important land planners may 
easily assume that fenced ranches do not impact wildlife beyond their fences, which are often 
assumed to represent a hard boundary containing potentially negative impacts therein. Notably, 
transect coverage did not sample inside of fenced farms and ranches. Therefore, the impact of the 
KraalsF (fenced kraals) variable on species occurrence was measured entirely from beyond the 
fenced boundaries of those farms, indicating diffuse, broad-scale effects beyond the fence into 
adjacent areas. The two species with the strongest aversion to kraals, also responded negatively 
to kraals behind fenced farm boundaries (Figure 5).  

  
Figure 5  Effect of kraals enclosed inside fenced farms/ranches (KraalsF) on gemsbok and eland probability of 

occurrence. KraalsF was measured at the largest kernel density scale (32 km radius). 

There are many designated ranching land use blocks in the AOI, especially Kgalagadi District, 
which are intended to be fenced and managed as farms, but have not yet been fenced since 
allocation. Instead, they function as typical unfenced cattleposts, presumably so awardees can 
exercise their dual grazing rights (i.e. benefit from grazing beyond their leased or titled 
boundaries). Importantly, the KraalsF variable does not include these cases. It only includes 
those areas which were truly fenced at their boundaries, as evidenced in satellite imagery. Thus, 
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the measurable KraalsF effects are not muddied by intended land use, but rather reflect the true 
situation on the ground. However, some fenced farm boundaries established decades ago (e.g. 
Ncojane and other TGLP ranches) are now dilapidated, with major gaps and considerable 
stretches with no fence remaining at all. Moreover, in other areas, although fences are new, gates 
are sometimes installed to purposefully herd cattle outside and graze in the adjacent WMA. Even 
where fences are intact and maintained it does not preclude the people residing on the farm from 
accessing areas beyond for hunting (poaching). These phenomena likely explain the negative 
response beyond fenced farms exhibited by disturbance-sensitive species. 

The take home point is that farms and ranches in the drylands ecosystem have large, broad-scale 
negative effects beyond proximity to their boreholes or kraals, and far beyond their fenced 
borders which negatively impact disturbance-sensitive wildlife species in particular. Fence lines 
cannot be conceptualized as hard boundaries separating agriculture from the wildlife space; 
kraals comprising the focal point of human-livestock activity inside fenced farms have 
attenuating impacts for substantial distances beyond those farms. 

3.1.3 Select specific highlights 

We do not comment on every species individually, but rather selectively highlight specific cases 
of management interest. 

3.1.3.1 Eland and gemsbok 

These two species had the highest performing models indicated by the model prediction 
performance measures displayed in their respective tables (e.g. AUC > 0.9). This is due largely 
to their exceptional predictability in relation to kraals. Results strongly reflect the fact that these 
two species, along with their most important predator (lion), are the most disturbance-sensitive 
Kalahari wildlife species and therefore most dependent on land uses free from 
pastoral/agricultural activity. These species are absent in areas with even low densities of kraals 
within a 32 km radius. One notable aberration in both eland and gemsbok HS models was the 
relatively high value predicted for areas directly south of KTP (KD27). Cattleposts within this 
communal grazing area are comprised of comparatively low numbers of kraals, thus gemsbok 
and eland were predicted to occur here based on kraals density variables, when in fact it is a dead 
zone. But there is more to this story in the context of landscape fragmentation and connectivity 
which can be explored in Phase 2. 

3.1.3.2 Pangolin 

Pangolin are rare in the landscape as evidenced by their limited records relative to other species 
(see Table 1). We are however confident that their rate of false absences (missed detections) on 
the prepared (dragged) comprehensive species track transects was very low and not differing 
from other species. Of those infrequent records several field observations occurred inside PAR 
land use types. Pangolin showed positive but non-significant occurrence probability responses to 
both KraalsNF and KraalsF at 32 km scale (see also Section 3.2 (e) below). Their apparent lack 
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of avoidance of pastoral areas may put them into more frequent contact with people and facilitate 
their trafficking within illegal wildlife trade networks for traditional medicines regionally and in 
Asia. This habitat suitability pattern may be a hint of insight to their heightened extinction risk as 
a species and family.   

3.1.3.3 Springbok 

Results corroborate the DWNP aerial survey record showing springbok population decline and 
range contraction. Their predicted high probability of occurrence landscape is now confined to 
KD1,2 and KTP, as well as adjacent KD3, particularly in the northwest areas centered around 
Ohe and Hunhukwe pans. 

The springbok map also serves as a good example highlighting the remarkable predictive power 
of the habitat suitability models generally. The final springbok model predicted isolated meta-
populations in the vicinity of the intersection of KD12,13, and SO1 in between the villages of 
Inalegolo, Kokong and Morwamosu, as well in the Okwa valley near the Trans-Kalahari 
highway crossing. These two areas where either not sampled (latter case) or failed to reveal 
detections (former case). Small, isolated, and most probably declining meta-populations are 
known from both locations however, outside of the track transect sampling effort. 

3.1.3.4 Wildebeest 

Among large antelopes in the under-researched AOI, wildebeest have had the most extensive 
research effort using geolocational telemetry collars. Foundational studies were carried out 
during 1989-92 (Bonifica 1992) and 1998-99 (Environment and Development Group 1999, 
DWNP 2000). These stressed the importance of southern GH11, and particularly the fidelity 
wildebeest showed to the area of intersection between GH11,13, and KD1. Remarkably, 
applying the track database collected 20-40 years after these radio-collaring studies, the final 
wildebeest model predicted this the highest probability occurrence hotspot throughout the entire 
Kalahari. It coincides with a narrowing pinchpoint of landscape connectivity threatened by 
proximity to Ncojane TGLP ranches, largely operated as unfenced cattleposts, the existence and 
potential expansion of the unofficial settlement of Ranyane, and most concerningly, the 
expansion of borehole allocations in the RAD development zone to the north and west of 
Ncaang. Wildebeest are known for their high wet season range fidelity in other regions 
(Morrison & Bolger 2012). This area centered around GH13 appears to be a remarkable example 
of such wet season range fidelity, despite the intervening decades when encroachment has 
intensified both in the surrounding vicinity as well as northeastwards towards Bere/Kacgae and 
Okwa valley, this latter fact probably increasing isolation of CKGR wildebeest (Selebatso 2017). 
Although connection to CKGR remains relevant, connectivity to the south in KD1,2 and KTP 
may now be more important for the bulk of remaining Kalahari wildebeest population to access 
this interdecadal hotspot centered on GH13, and this is imminently threatened by RAD cattlepost 
proliferation around Ukwi, Ngwatle and Ncaang. Spatial quantification of such risks will be 
measured in Phase 2 using the most disturbance-sensitive species. 
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3.2 Species responses to human-livestock disturbance  

The following plots depict each species’ occurrence probability response to the density of kraals 
(kraals/km2) in the free-ranging landscape (KraalsNF) at the largest (32 km radius) kernel scale. 
Presence/Absence data points are also displayed from each logistic model (i.e. Occurrence 1 or 
0), which can help in the interpretation of response in addition to the plsmo spline (line). Bear in 
mind the points themselves appear often as lines because there are hundreds or thousands each of 
presences and absences (see processed locational data in Table 1). Species are grouped a-e below 
according to commonality in their response. Figure 4 can assist in interpretation of the plots as 
the x-axis scale visualized in the landscape. 

 

a) humped, decline at higher kraal density 
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These species generally reach their highest occurrence probability near zero but have a 
secondary hump at intermediate kraals density. Genet, ground squirrel and springbok are 
exceptions that reach their highest occurrence probability at intermediate kraals density. Ostrich 
and brown hyena are nearly equivalent in highest probability both at zero and intermediate 
density. All these species show decline at highest density of kraals but appear tolerant of 
cattlepost country at the typical 6-8 km spacing of borehole allocations. 

 

b) Negative, absent at highest density 

 

 

These species decline more steadily with increasing kraals density than the previous species and 
are absent at highest kraals density. African wild cat and caracal especially also show a minor 
hump or sub-peak at intermediate kraals density, but less prominently than the previous species. 
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c) Negative, absent before high density 

 

 

  

These species’ occurrence probabilities decline markedly as kraals density increases. They may 
occur at low probability in cattlepost country but are generally excluded from most areas of 
intermediate kraals density and absent before highest kraals densities are reached. 
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d) Strongly negative; absent even at relatively low kraal density  

 

 

Note the differing x-axis scale for eland. These 3 species decline sharply at any density of kraals 
in the landscape at the largest 32 km radius scale. Their responses can also be interpreted in 
terms of proximity to nearest kraals/cattlepost, i.e. there are gaps in the landscape between where 
kraals are and where these species begin to occur at a probability above zero. 
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e) Neutral or positive 

 

 

 

These species either have no apparent negative response to increasing kraals density, or in fact 
become more abundant in areas of higher kraals density. Hare had no absences and could 
therefore not be plotted. Had it been it would most resemble the steenbok plot i.e. a perfect 
horizontal line at occurrence probability 1 with no observations at 0. In other words, ubiquitous 
regardless of kraal density. Jackal is an exception among the group in showing a minor decline in 
areas of highest kraals density, although still common there. The remaining species: springhare, 
striped polecat, pangolin, duiker, slender and yellow mongooses all increase as landscape kraals 
density increases. Yellow mongoose shows an increasing trend even beyond the highest kraals 
density measured in the landscape at this scale.  
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3.3 Biodiversity maps  
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Once again, these biodiversity maps are the sums of the individual species occurrence probability 
surfaces (HS maps), which show the expected number of modelled species occurring at each 
pixel of the AOI (Penjor et al. 2021). The most prominent visual impression is the exceptional 
value of the ungazetted KD WMAs. Lest this be misinterpreted to the effect: “the KD WMAs are 
even more important than the KTP” - this is not a correct statement. KD WMAs continue to 
exhibit high value in large measure because they are contiguous with each other and the KTP. In 
the science and philosophy of landscape connectivity, their whole is greater than the sum of each 
part alone; that is, to remove, isolate or otherwise lose any piece of the puzzle - the KTP or any 
adjacent WMA - would predictably render whichever remaining smaller piece much less 
valuable. The KD WMAs would be immensely deprived if the KTP ceased to exist in its present 
functioning form, and vice versa. Shifting one step up to the larger AOI scale, if this KTP-KD 
WMA core were to become isolated from the CKGR core, it will predictably cause areas to 
decline in value. What this means specifically is wildlife populations decline, ranges contract, 
and extirpations increase in likelihood over shorter timeframes when habitat extent and 
connectivity among habitat core areas decline.  

These phenomena underpinning the importance of extensive core habitats and connectivity 
among them have already been observed and documented at the next step up in scale - i.e. the 
isolation of the AOI from connection to Makgadikgadi and Okavango delta due to erection of 
game-proof fencing, and similar loss of connectivity to Namibia and South Africa. Wildebeest 
and hartebeest populations particularly experienced well-documented die-offs (Child 1972, 
Owens and Owens 1983, Parry 1987, Williamson and Mbano 1988, Spinage 1992, Thouless 
1998) from which they have never recovered (DWNP 2015). A hard lesson of the racheting 
down effect of landscape fragmentation via human-livestock encroachment facilitated by 
uninformed planning, and reminder of the paramount goal of the present KGDEP to keep the two 
remaining cores within the AOI connected.  

While KD WMAs would not stand on their own in any comparable measure of wildlife value in 
the absence of the KTP, it seems that their boundaries in fact may encompass richer ground than 
the KTP itself, providing critical limited resources to highly mobile wildlife that periodically 
retreat to the protected area. The Schwelle has long been noted the area of highest wildlife 
concentration in the Kalahari (DHV 1980, Bonifica 1992), speculatively due to the density of 
pans and relatively higher mineral concentration soils. The core of the Schwelle centred at the 
Matsheng villages (Hukuntsi, Tshane, Lehututu, Lokgwabe), and its extended axis (Kokong, 
Khakhea, Mabutsane, Sekoma in the southeast, Ncojane, Kule in the northwest) has been 
encroached and compromised by historical settlement and agricultural expansion diffusing from 
those centres.  

Present day WMAs thus encompass the best of what remains of the Schwelle. Initial baseline 
assessments of the Schwelle stressed the importance of wildlife access to critical resources 
beyond the protected area boundaries if populations are to remain large and mobile as opposed to 
small and sedentary (Bonifica 1992). Massive seasonal redistributions of antelope populations of 
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global note into the WMAs recorded in recent years (Keeping et al. 2018) attest to the 
importance of ungazetted KD WMAs effectively safeguarding what remains of the Schwelle via 
restrictions to borehole allocations for cattlepost expansion within their borders upheld by KD 
landboard.  

3.4 Tentative inferences on core areas and connectivity from HS models 

KTP plus the adjacent 4 WMAs (KD1,2,12,15) represent the largest and highest value core for 
wildlife within the AOI. In the context of landscape connectivity, this primary core can be 
viewed in relation to a second core of CKGR plus adjacent 2 WMAs (GH10, KW2). The habitat 
suitability maps, especially for large species, together with the cumulative (biodiversity) 
probability occurrence maps reflect 3 connections linking the two cores which mirror the 
configuration of interconnecting WMAs (GH11/13, KD5/6, SO2/KW6). Thus, the present 
rigorous analysis of wildlife habitat suitability using a novel comprehensive wildlife locational 
dataset corroborates earlier CI WKCC project findings highlighting these 3 potential corridors 
(Meyer and Meyer 2018).  

Among the most disturbance-sensitive species, their habitat suitability maps indicate continuity 
through 2 of the 3 corridors previously highlighted by CI; what we will refer to hereafter as the 
‘central’ corridor (KD5,6,12) and the ‘western’ corridor (GH11,13, KD1). These two corridors 
appear to have differing importance to different species. They are perhaps no better visualized 
than using the gemsbok HS map as example (see page 29). Gemsbok has continuous high habitat 
suitability through the central corridor linking core populations, while its habitat suitability 
declines and potentially fragments in the western corridor at the pinchpoint of encroachment 
between Ranyane and Ncaang. By contrast, eland and lion seem to have a stronger connection 
through the western corridor and face a large gap of nearly zero probability in the central 
corridor pinchpoint between KD12 and KD5,6. 

The eastern corridor (SO2, KW6) appears relatively low value for movement of these three 
highly sensitive species due to its narrow width and high level of encroachment. KW6 has 
become compromised by encroachment of cattleposts at evenly spaced allocations as though 
Kweneng landboard has regarded it as PAR/CGA rather than WMA. The entire eastern corridor 
will become irrelevant for large wildlife anyway as SO2 is now intended to be carved into a 
fenced farm layout. The western corridor is immediately threatened by RAD allocations 
expanding from Ukwi, Ngwatle, Ncaang and by the location of Ranyane. The central corridor is 
threatened by misallocated boreholes inside KD12 and 6, by proposals to occupy KD5, and by a 
complete severing with new farms and fencing along the highway between Kang and Hukuntsi. 
The western and central corridors join in southeastern GH11 to form a single pinchpoint of 
connectivity which crosses the Trans-Kalahari highway. This singular remaining link between 
KTP and CKGR for disturbance-sensitive species is threatened by recent RAD allocation 
expansion south of Kacgae.  All these issues will be explored and their impacts on wildlife 
connectivity quantified through the scenario modelling in Phase 2. 
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3.5 Look ahead to Phase 2 connectivity modelling 

Phase 2 connectivity modelling is computationally intensive and time-consuming. This forces a 
trade-off between species examined and number of scenarios. There are a host of already 
allocated, planned and proposed agricultural developments (RAD borehole allocations, WMA 
dezonings, fenced ranch expansions) poised to affect precisely the remaining precarious 
corridors of wildlife connectivity. Ideally, each of these future changes to the landscape can be 
quantified to provide land planners with the most complete information with which to optimize 
their land planning decisions. To achieve this, we are opting to minimize the species considered 
in order to maximize the future scenarios information. We require a model species which is 
sensitive to the types of future changes coming to the landscape (i.e. more fences, farms, 
cattleposts). 

3.5.1 Gemsbok as model, supplemented with eland and lion 

Gemsbok model performance returned the highest AUC (0.93) among all species (although eland 
is a very close second). Arguably, gemsbok has the most reliable prediction of all models. 
Gemsbok distribution is explained by kraals (cattleposts) in the free-ranging landscape at 
exceedingly high probability (to the -170 decimal place p-value with zero standard error), and 
kraals on fenced farms at similarly ridiculously high probability (-43 decimal place p-value). The 
gemsbok HS map exhibits the sharpest visible gradient and contrast between high and low 
probability of occurrence areas. Essentially, gemsbok occurs at high probability throughout the 
Kalahari landscape in areas remote from human-livestock disturbance. 

The pattern of attenuating avoidance of cattleposts by gemsbok detected by the multi-scale SDM 
model-building which related many thousands of gemsbok presence/absence locations to many 
thousands of kraal locations throughout the Kalahari landscape is remarkably quantitatively 
consistent. Previous studies have noted this striking pattern of gemsbok distribution in relation to 
human-livestock disturbance (e.g. DHV 1980, Bergstrom and Skarpe 1999) and some tentatively 
argued that hunting pressure is the cause (e.g. Verlinden et al. 1998). From a land use planning 
perspective, the cause is somewhat irrelevant. What is important rather is that the pattern exists, 
and it is highly predictable in relation to the planning that landboards have control over (i.e. 
borehole locations).  

We therefore nominate gemsbok as an umbrella species in Phase 2 modelling for others less 
sensitive to disturbance, and a flagship species whose probability of occurrence reflects the 
remaining free-ranging Kalahari wilderness. Gemsbok are not yet a species of exceptional 
conservation concern. They are the most arid-adapted large-bodied Kalahari antelope and their 
population has fared well compared to other species more prone to long-distance drought-
induced migrations like hartebeest, wildebeest, and springbok. However, the fact that Kalahari 
gemsbok do persist with high probability virtually everywhere that agricultural development is 
not – makes them an excellent candidate for connectivity modelling because it is exactly the 
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distribution of livestock and people through the allocation of boreholes and ranching blocks that 
threatens conservation in this drylands ecosystem as recognized by the present UNDP project, 
and, most importantly, precisely that which land planning has control over. Noteworthy also is 
the fact that, while southern oryx (gemsbok) are still common in the Kalahari, 2 out of 4 global 
oryx species have been hunted (poached) to extinction in the wild. Gemsbok themselves, within 
their limited southern African range, are now more common in captivity (game ranches) than in 
the wild (East 1998, Relton et al. 2016). These facts, along with their clear high sensitivity to 
pastoral land use at broad scales, further support the application of gemsbok as a model umbrella 
species for the remaining free-ranging Kalahari wildlife community. 

We will apply gemsbok to the full range of Phase 2 scenarios, but also model the other two 
highly disturbance sensitive species (eland and lion) against a limited subset of packaged 
scenario options to supplement the evidence base for land planners and policy makers to make 
informed choices regarding the future of the Kalahari landscape. 
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